MARK SCHEME for the March 2016 series

0580 MATHEMATICS

0580/42
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE ${ }^{\circledR}$ and Cambridge International A and AS Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0580	42

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu.	Answers	Mark	Part Marks
1 (a) (b) (c) (d)	$\frac{8}{8+15+9} \times 640$ oe 300 and 180 10 nfww $\frac{7}{24}$	1 2 2 3	With no errors seen B1 for each or SC1 for answers reversed M1 for $160 \div 15.25$ implied by 10.5 or $10.49 \ldots$ nfww M1 for $\frac{3}{8}+\frac{1}{3}$ oe M1dep on previous M1 for $1-\operatorname{their}\left(\frac{3}{8}+\frac{1}{3}\right)$ oe
2 (a) (b) (c) (d)	Correct perpendicular bisector of $A B$ with 2 pairs of correct arcs isw Correct angle bisector at A with two pairs of correct arcs isw Circle centre E radius 5 cm isw	2 2 2FT 2	B1 for accurate with no/wrong arcs or M1 for correct intersecting arcs with no or wrong line B1 for accurate with no/wrong arcs or M1 for two pairs of correct arcs with no or wrong line FT circle centre their E radius 5 cm provided (a) and (b) attempted M1 for $250 \div 50$ oe soi e.g. from arc If 0 scored $\mathbf{S C} 1$ for circle centre their E cao B1 for each If $\mathbf{0}$ scored, $\mathbf{S C 1}$ for two 'correct' regions but in part (c), centre correct but radius incorrect

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0580	42

Qu.	Answers	Mark	Part Marks
	46 11 $\frac{7}{19}$ oe $\frac{9}{200}$ or 0.045 10800 7.2	3 1FT 1 2 1 3 1FT	B1 for each FT $29+$ their 3 values from (a) M1 for $\frac{n}{16+\text { their } 3}(0<n<(16+$ their 3$))$ or $\frac{4+\text { their } 3}{k}(k>(4+$ their 3$))$ M2 for $1 / 2(900+1500) \times 9$ oe or M1 for method of finding a relevant area FT (their 10800) $\div 1500$
4 (a) (i) (ii) (iii) (iv) (b) (c)	64 16 to 16.5 62 6 $\begin{array}{llllllllll}{[8]} & 12 & 23 & 11 & {[4]} & 2\end{array}$ $\begin{array}{lllll}\text { Blocks of height } & 0.6 & 2.3 & 1.1 & 0.4\end{array}$ with correct widths	$\begin{gathered} \hline 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ \hline \end{gathered}$	$\mathbf{M 1}$ for $\mathrm{UQ}=71$ to 71.5 or $\mathrm{LQ}=55$ B1 for 24 indicated B1 for 54 seen B2 for 1 incorrect reading FT others B1 for 2 correct FT their (b) for heights B1FT for each correct block If $\mathbf{B 0}, \mathbf{S C 1}$ for blocks of widths $20,10,10,10$ or for their correct frequency densities
5 (a) (b)	$\begin{aligned} & 6250 \\ & 4441 \end{aligned}$	3 3	M2 for $\frac{6000}{100-4} \times 100$ oe or M1 for 6000 associated with 96 [\%] B2 for 4441.1 to 4441.2 or 4440 or M1 for $\frac{6000}{1.351}$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0580	42

Qu.	Answers	Mark	Part Marks
(c)	1.58 or 1.581...	5	M1 for $6000 \times\left(1+\frac{1.5}{100}\right)^{8}$ oe A1 for $6758.95 \ldots \ldots$. or 6758.96 to 3 sf or better or 758.95 or 758.96 rounded or truncated to 3 sf and M2 for $\left\{\right.$ their $\left.\left(6000 \times 1.015^{8}\right)-6000\right\} \times \frac{100}{6000 \times 8}$ oe or M1 for $\frac{6000 \times r \times 8}{100}$ oe
(ii) (b) (i) (ii) (c)	Rotation 90° [anticlockwise] oe (4, 4) Enlargement [centre] (5, 1) [scale factor] 2 Image at $(-2,5)(-2,7)(-1,7)$ Image at $(-2,1)(-2,-1)(-1,-1)$ Image at $(-2,3)(-4,3)(-4,4)$	1 1 1 1 1 1 2 2FT 3	B1 for translation by $\binom{-5}{k}$ or $\binom{k}{3}$ FT their triangle P reflected in line $y=3$ B1 for reflection of triangle \boldsymbol{P} in the line $x=3$ or $y=k$ B2 for 2 vertices correct in triangle or 3 correct co-ordinates soi in working or B1 for 1 vertex in triangle correct soi or M1 for $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{lll}3 & 3 & 4 \\ 2 & 4 & 4\end{array}\right)$ shown or statement rotation 90° [anticlockwise] about $(0,0)$
7 (a) (b) (c)	$\begin{array}{\|lll} \hline 3.5[0] & 1.94 & 3.11 \end{array}$ Fully correct curve $-0.7 \text { to }-0.6$	3 5 1	B1 for each B3 FT for 10 or 11 points or B2 FT for 8 or 9 points or B1 FT for 6 or 7 points B1 indep two separate branches not touching or cutting y-axis SC4 for correct curve, but branches joined

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0580	42

Qu.	Answers	Mark	Part Marks
(d) (i) (ii) (e)	-1 2.5 -0.6 to -0.5 with correct ruled line Correct tangent and $0.5 \leqslant \operatorname{grad} \leqslant 0.85$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{1} \\ & \mathbf{3} \end{aligned}$	If 0,0 , M1 for $y=2.5-x$ oe seen in working B2FT for drawing their ruled line from (d)(i) or M1 for ruled line through $(0,2.5) \mathrm{FT}$ or gradient-1 FT B2 for close attempt at tangent at $x=2$ and answer in range OR B1 for ruled tangent at $x=2$, no daylight at $x=2$ Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x=1.8$ and 2.2 and M1 (dep on B1 or close attempt at tangent [at any point] for $\frac{\text { rise }}{\text { run }}$
8 (a) (b)	15 nfww $\frac{x+6}{x-2}$ nfww final answer	3 5	M1 for $y=k \sqrt{(x+2)}$ oe A1 for $k=3$ B2 for $(x+6)^{2}$ oe or SC1 for $(x+a)(x+b)$ where $a b=36$ or $a+b=12$ or $x(x+6)+6(x+6)$ B2 for $(x-2)(x+6)$ or SC1 for $(x+a)(x+b)$ where $a b=-12$ or $a+b=4$ or $x(x+6)-2(x+6)$ or $x(x-2)+6(x-2)$
(c)	$\frac{X}{W^{2}+1}$ nfww final answer	5	M1 for $W^{2}=\frac{X-a}{a}$ or $W \sqrt{a}=\sqrt{X-a}$ M1 for next productive step M1 for 2nd productive step M1 for 3rd productive step M1 for final step leading to $a=$
(d)	$\frac{-7 x-1}{x^{2}-1} \text { or } \frac{-7 x-1}{(x-1)(x+1)}$ final answer	5	M1 for common denominator $(x-1)(x+1)$ isw M1 for $(x-2)(x-1)-(x+3)(x+1)$ B2 for $x^{2}-2 x-x+2-\left(x^{2}+3 x+x+3\right)$ oe or $\mathbf{B 1}$ for either expansion

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0580	42

Qu.	Answers	Mark	Part Marks
9 (a) (i) (ii) (iii) (b) (c) (i) (ii)	$\begin{aligned} & \mathbf{y} \\ & \mathbf{x}+\mathbf{y} \\ & \mathbf{x}+2 \mathbf{y} \\ & -(1 / 2 \mathbf{x}+\mathbf{y}) \text { oe } \\ & \overrightarrow{M G}=2 \mathbf{x}+2 \mathbf{y} \\ & \overrightarrow{M H}=\mathbf{x}+\mathbf{y} \text { or } \overrightarrow{H G}=\mathbf{x}+\mathbf{y} \\ & \overrightarrow{M G}=2 \overrightarrow{M H} \text { oe } \end{aligned}$		M1 for a correct unsimplified route or identifying $\overrightarrow{O S}$ M1 for a correct unsimplified route or $\overrightarrow{\mathrm{GR}}=-1 / 2 \mathbf{x}$ or $\overrightarrow{\mathrm{RG}}=1 / 2 \mathbf{x}$ M1 for a correct unsimplified route e.g. $2 \overrightarrow{P Q}$ Accept $\overrightarrow{H M}=-\mathbf{x}-\mathbf{y}$ or $\overrightarrow{G H}=-\mathbf{x}-\mathbf{y}$ Dep on (c)(i) correct, arrows essential
10 (a) (b) (i) (ii)	5.2[0] or 5.196... 7.2[0] or 7.196... 62.4 or $62.35 \ldots$	3 1FT 5	M2 for $\left[h^{2}=\right] 6^{2}-3^{2}$ or better or M1 for $h^{2}+3^{2}=6^{2}$ or B1 for $P R$ (or $P Q$ or $Q R$) $=6$ FT their (a) +2 M4 for $12 \times 6 \times 1 / 2 \tan 60$ oe or M3 for $6 \times 1 / 2 \tan 60$ oe or M2 for realising that $1 / 2$ base $=1 \times \tan 60$ oe or B1 for angle 30 or 60 in correct position on diagram or in a calculation If $\mathbf{0}$ scored, $\mathbf{S C} \mathbf{1}$ for volume $=$ an area $\times 12$ seen
11 (a) (i) (ii) (b) (c) (d)	11 $14 x+3$ final answer 17-21x final answer $\begin{aligned} & -\frac{1}{9} \\ & -1.3 \end{aligned}$	1 3	M1 for $7(2-3 x)+3$ oe M1 for $3(2-3 x)=7$ oe M1 for correct first step M1 for $2-3(x+4)-(7 x+3)=0$ M1 for $-10 x-13=0$ oe If $\mathbf{0}$ scored, $\mathbf{S C 1}$ for answer -0.7 oe after $2-3(x+4)-7 x+3=0$ shown previously

